复杂问题该用理性决策还是感性决策? - 蓝蓝设计_UI设计公司

帝皇彩票官网

追求卓越一诺千金

蓝蓝设计,2011年成立,主创清华团队,专注软件和互联网ui设计开发。擅长企业信息化管理、监控、大数据软件UIUE咨询和设计开发服务。立足UI,好好学习,天天进步!


复杂问题该用理性决策还是感性决策?

2019-9-28 泥人张 设计管理与成长


一、明知识、默知识与暗知识的四象限图

AI被热捧那么久,王维嘉博士的《暗知识》是第一本把它讲明白的中文科普书。

这本书第一个知识框架,就是下面这张4象限图:

思考方式的革命(一)复杂问题该用理性决策还是感性决策?

(该图来自:王维嘉的《暗知识》)

该图将知识按“是否可表达”、“是否可感受”的两个维度分为四类:

  • 可表达的“明知识”(包括可感受的牛顿定律和不可感受的量子力学)
  • 不可表达但能感受到的“默知识”
  • 而“暗知识”则是:不可表达、又没法感受到。

具体来说,暗知识是机器发现的,人类无法感受也无法表达的知识。

就像围棋,人类2000年来保留的棋谱大概有3000万个(8位数),但围棋上棋子的摆放方法的可能性有2的361次方个(108位数),中间何止相差万亿倍。人类对围棋的认知,就是基于3000万这个8位数范围的认知。与机器相比,相差10的100次方。这部分机器能掌握而人不能的,就是暗知识。

这是本书让人惊叹的第一个点,通过设立一个新的二维坐标模型,就能够找到人类以往概念上的盲区!其次,王博士选的词汇也是超一流的,“暗”和“默”两个字都很有神采。

虽然是“科普书”,但书里还是不得不讲到人类的“神经网络”、计算机的“机器学习”、“卷积”等复杂概念。

我用自己的语言,以“识别一只猫”为例,为大家简单讲述一下AI吧:

(1)识别猫与计算“1+2=?”不同,前者是“默知识”—— 无法用准确的语言描述出来。在计算机历史上,通过“尖尖的耳朵”、“长尾巴”、“圆眼睛”等信息来识别猫的程序都失败了。

(2)我们闭上眼睛想想,如何把一只猫与一只豹子的照片区别开,需要补充很多语言描述。把一只猫与一只狗区别开,又需要补充一些描述,其实人是不能把“识别一只猫”这件事情用语言明确说清楚的 —— 既然人说不清,传统计算机程序就做不到。但人,哪怕是三岁的孩子都能区别猫和狗,背后是什么原理呢?

(3)后来科学家通过研究人类大脑的神经网络,发现大脑是通过分层判断,最终在神经元中留下“历史痕迹”的逻辑链条的。这是很有趣的生物学现象,一个神经元受到的刺激(生物电击)越多,得到的营养就越多、就会成长得越强大。而每次判断在每层神经元中留下的痕迹,就会强化今后整个人脑神经网络的判断能力。

(4)计算机科学家根据对人类大脑神经网络的认识,开发了计算机“神经网络”。这个网络不但可以识别“猫”,而且识别猫的过程也同样无法输出成为人能认识的“文字描述”。

(5)这些识别算法就沉淀在“神经网络”中(表现为数据及数据关系),无法被人类直接掌握,人只能通过安装了神经网络的计算机获得这个能力。

帝皇彩票官网 (6)不知大家注意到没有,为了让计算机解决这个“默知识”的问题,我们最终是用了“暗知识”来解决。

(7)这类“暗知识”,能够在计算机之间快速复制,但无法在人和人之间复制,人和人之间能传递的只能是控制AI计算机的方法。

暗知识大体说完,我再回到与我们的思考方式相关度更高的“默知识”。

二、《思考,快与慢》的“系统1”

《思考,快与慢》这本书大约是我2013年读到的,我认为这是那一年我读到最好的书。好就好在研究老对象(人类行为与注意力)的过程中,用了新思考框架,并建立了有说服力的体系。

几年来,这本书被我放在电脑显示器下面,意喻为“抬高了我的视野”。当然,最初是为抬高了显示器,起到保护颈椎的作用。

思考方式的革命(一)复杂问题该用理性决策还是感性决策?

书里是这样定义人的两种思维模式的:

  • 系统1 —— 其运行是无意识且快速的,不怎么费脑力,没有感觉,完全处于自主控制的状态。例如会骑自行车的人,他在骑车时是不需要主动意识指挥手如何转动车把的,系统1会接管这些动作。
  • 系统2 —— 将注意力转移到需要费脑力的大脑活动上来。例如:大家可以回忆一下自己第一次骑自行车的场景,当时是需要非常专注地控制双手和双脚的,所以往往手忙脚乱。我记得我如果稍不能控制,双手是会放掉车把,抱住旁边的足球门柱的不知各位刚学自行车时,是否也是如此?

当系统2学习掌握了重复使用的套路后,大脑会将重复工作转给系统1。

我高中时,经常因为简单的数学加减乘除四则混合运算错误,导致考试得不到高分。我训练自己做了大量专项练习,后来不仅计算过程不出错,而且感觉当时是把简单的四则运算从“系统2”挪到“系统1”了。考试时,手上做着乘法竖式,脑子里考虑是否有更好的解题思路。

从另一个角度看,大脑的重复套路工作从“系统2”转给“系统1”,还有一个更大的好处 —— 降低能力消耗。

系统1反应很快,对能量的消耗远低于系统2。我查了《人类简史》、《文明是副产品》等书籍,看到这样的资料:晚期智人的大脑占体重的1/20,但耗能、耗氧量却达到全身的1/5。在工业革命前的5万年里,智人供养这样一个大脑是极其不容易的,所以我推断:

  • 第一,大脑不会有大比例未开发区域,因为咱们的大脑结构在5万年前成熟时(今天人的脑容量与5万年前差别不大),人体根本没有多余的营养可以供它浪费。
  • 第二,从机制上,大脑会尽量把一些套路工作从系统2转给系统1,以期降低脑力消耗。

系统1毕竟简化了判断过程,是否会造成很多误判呢?我相信是的,但因为能量的限制,人类当时应该是找到了中间最优解。

我认为:《思考,快与慢》的“系统1”,学习的其实就是前一节说的“默知识”。

还是以骑自行车为例,咱们可以教新手一些保持自行车平衡的要领,但一个新手学会骑车的过程,是实践重于理论的。最后形成的知识,就是无法说清的“默知识”,这个默知识保存在我们每个人的“系统1”当中。

当然,系统1与系统2的关系还有很多层次,并对人类社会产生了深远影响。

例如:遇到紧急情况时(“快撞到行人了”),系统2会从系统1接管人体控制权,多费一点脑力精确控制好自行车的方向,避免造成交通事故。

毕竟我的读者都是toB企业同事,我还是讲一个书中与咱们业务有关的故事。作者丹尼尔·卡尼曼是诺贝尔经济学奖获得者,21岁时(1955年)曾经在以色列军队里负责设计士兵面试流程。这之前,面试官完全根据感觉打分,结果筛选出来的新兵合格率很低。卡尼曼做了一套设计,听起来和我在《》中的做法类似,就是要求面试官严格按框架打分。

思考方式的革命(一)复杂问题该用理性决策还是感性决策?

思考方式的革命(一)复杂问题该用理性决策还是感性决策?

(上图为我系列文章(六)中提供的打分表)

卡尼曼不是他的面试官们的上级,面试官们不喜欢做“打分机器人”。卡尼曼的让步是,同意面试官根据标准格式打分后,最后“闭上眼睛给士兵打个总分”。

最后的结果是,新的测评方法大幅提高了有效率。45年后卡尼曼回到该部队,发现他的面试方法还在延用。

而我的面试表最后也有这样一行:“自己是否愿意带领此人去完成一个困难的任务?”其实这是一个非常感性的问题,与表格其它部分(记录工作年限、记录回答情况等)非常不同。

我观察,这就是在很多领域中,决策复杂问题的一个优选方法:

  1. 把抽象问题具象化:先用理性框架(“明知识”)、从多个角度用数字化的方法分项打分;
  2. 再把具象问题抽象化:从内心出发,我是否要用这个人?(使用了“默知识”:更感性,但往往更准确)

这个过程的好处是:

  1. 过程可操作性好,让决策者全面思考,不会漏项;
  2. 利用决策者的抽象判断能力(“默知识”),更高纬度地做出判断,不会因为打分表的设计缺陷造成决策错误。

我们企业决策中,如果死板地使用调查前设计的“打分表”,往往会错过发展机会。因为环境在剧烈变化,调查前很难做出完美的打分表。而“默知识”会让我们熟悉业务的决策者更准确地做出判断。

三、内隐学习和外显学习

上面说了很多“默知识”的例子,具体怎么学习和使用“默知识”呢?最近“得到APP”的精英日课正好也推出了一篇文章“内隐学习和外显学习”。

简而言之,外显学习就是学习“明知识”的过程,掌握历史知识、化学公式……

内隐学习,则是学习“默知识”的过程,学到的是个“感”。例如:英语的语感。

1993年高考时,记得我的英语成绩大约是140分(满分150)。因为不考口语,这全都是英语语法和单词,大多是“明知识”。

但我工作后能在外企说流利的英文,全有赖于大学时在华中理工(现在的华中科技大学)有一个教“外贸英语”的廖老师。他逼着我们每人整篇整篇地背诵外贸英语,上课经常现场考对话,当时那个厌恶哪……没想到坚持了一个学期,死记硬背了几百句常用对话后,英语“语感”就形成了。大脑中可以用英文思考问题,我是一生受用。

“精英日课”引用的一个调查研究还有个有趣的结论:外显学习明知识,注意力越集中越好;但集中注意力反而会妨碍内隐学习。

为什么?因为“默知识”是没有明确规则的,越努力找规律越学不会,不如放松一些,让头脑直接沉浸在直观信息中,这样更容易领悟那个“感”。

在企业经营中,我们经常需要新的创意:如何设计一个摆脱俗套的新激励方式?如何做营销上的创新?如何设计一个全新的内容?这时候,让注意力分散些,看看不相关的书籍、讨论一些别的话题,可能灵感会来的更快。

就像我写这篇文章,目的与路线图系列是一样的,还是想帮助大家提升经营管理能力。但如果不引入更多关于思考方式、关于人类发展史的文章,就会跳不出日常操作的层面,不能给大家带来新的空气。

四、小结

这篇文字是“思考方式革命”的第一篇。我讲的不是明知识、也不是默知识,我讲的是一些新的思考方法

(1)如何通过增添新的维度,让你对研究对象(无论是客户群、团队或产品服务)增加新的评估方式?操作工具就是最前面的四象限图。

(2)设计新体系时,用词要精准。王维嘉博士用一个“暗”字,一个“默”字,把体系讲的很清楚。“名不正言不顺”,这是我经常说的道理。一个事儿的“名字”选错了,要费很多口舌解释,到头来没听到解释的人看了还是会误解。

(3)计算机AI算法是基于人类的“神经网络”模型的。企业管理中,一个体系的设计、一个测算模型的建立,都要基于“自然”的业务规则,基于人性的需求进行考量。我不是讲抽象的“道”,我说的是可以操作的规则。

(4)例如:人的大脑将重复套路工作交给系统1,就是符合降低消耗的规则的。而“能量的限制”就是工业革命前的20万年里控制人类发展的主要因素。

(5)我们做企业,也是同样有很多限制,财务上有利润要求、有任何时点现金流不得低于安全线的要求。这属于“明知识”。

(6)在不能用“明知识”直接通过计算做出决策的复杂情况下,基于“感觉”的判断实际上更准确。所以专业知识重要,但业务背景更重要。

(7)但如果只靠“感觉”决策,也很危险。文中举了一个新兵打分的例子。最佳方法是:让决策者先结构化地全面多维度打分,然后再“感性”地做出最终判断。

帝皇彩票官网 (8)注意力分散些,有利于创新。所以需要新点子时,要给团队成员新环境、新场景和一些新时间。

(9)默知识这么重要,如何得到?要反复练习,不专注(忘掉规则)地学习。

标签: 决策 问题决策 复杂问题 « 本质思考是产品创新的基础 | 品牌年轻化=品牌年轻人化?»


蓝蓝 http://www.bjhbys.com

  1. 2019年11月(3)
  2. 2019年10月(53)
  3. 2019年9月(48)
  4. 2019年8月(63)
  5. 2019年7月(59)
  6. 2019年6月(59)
  7. 2019年5月(31)
  8. 2019年4月(37)
  9. 2019年3月(43)
  10. 2019年2月(26)
  11. 2019年1月(45)
  12. 帝皇彩票官网2018年12月(41)
  13. 2018年11月(40)
  14. 2018年10月(29)
  15. 2018年9月(40)
  16. 2018年8月(87)
  17. 2018年7月(107)
  18. 2018年6月(86)
  19. 2018年5月(110)
  20. 2018年4月(40)
  21. 2018年3月(35)
  22. 2017年8月(35)
  23. 2017年7月(45)
  24. 2017年6月(7)
  25. 帝皇彩票官网2017年5月(27)
  26. 2017年4月(51)
  27. 帝皇彩票官网2017年3月(70)
  28. 2017年2月(65)
  29. 2017年1月(69)
  30. 2016年12月(55)
  31. 2016年11月(111)
  32. 2016年10月(92)
  33. 2016年9月(53)
  34. 2016年8月(9)
  35. 2016年7月(4)
  36. 2016年6月(9)
  37. 2016年3月(19)
  38. 2016年2月(26)
  39. 2016年1月(30)
  40. 2015年12月(33)
  41. 2015年11月(35)
  42. 帝皇彩票官网2015年10月(46)
  43. 2015年9月(43)
  44. 2015年8月(40)
  45. 2015年7月(33)
  46. 2015年6月(46)
  47. 2015年5月(58)
  48. 2015年4月(70)
  49. 2015年3月(55)
  50. 2015年2月(17)
  51. 2015年1月(33)
  52. 2014年12月(21)
  53. 帝皇彩票官网2014年11月(84)
  54. 2014年10月(94)
  55. 2014年9月(6)
  56. 2014年8月(1)
  57. 2014年7月(13)
  58. 帝皇彩票官网2014年6月(66)
  59. 2014年5月(99)
  60. 2014年4月(88)
  61. 2014年3月(102)
  62. 2014年2月(68)
  63. 2014年1月(83)
  64. 2013年12月(106)
  65. 帝皇彩票官网2013年11月(112)
  66. 2013年10月(61)
  67. 2013年9月(20)
  68. 2013年7月(13)
  69. 2013年6月(27)
  70. 2013年5月(48)
  71. 2013年4月(39)
  72. 2013年3月(8)
  73. 2013年2月(20)
  74. 2013年1月(31)
  75. 2012年12月(33)
  76. 2012年11月(31)
  77. 2012年10月(23)
  78. 2012年9月(8)
  79. 2012年7月(14)
  80. 帝皇彩票官网2012年6月(15)
  81. 2012年5月(31)
  82. 2012年4月(24)
  83. 2012年2月(4)
  84. 2012年1月(8)
  85. 2011年12月(35)
  86. 2011年11月(32)
  87. 2011年10月(13)
  88. 2011年8月(1)
  89. 2011年6月(1)
订阅Rss
状元彩票计划 桔子彩票官网 湖南快乐十分走势 迪士尼彩乐园登陆 帝皇彩票开奖 帝皇彩票官网 迪士尼彩乐园 快3娱乐平台 迪士尼彩乐园开户 帝皇彩票登陆